Module qsarmodelingpy.Interfaces
Implements Typing constraints to config data passed to some modules. For instance, GA and OPS both accepts a configuration Dictionary that follow these rules.
Classes
class ConfigExtValInterface (*args, **kwargs)-
dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)
Ancestors
- builtins.dict
Class variables
var XMatrix : strvar autoscale : boolvar extval_type : intvar latent_vars_model : Optional[int]var lj_transform : boolvar output_X_test : strvar output_X_train : strvar output_cv : strvar output_extval : strvar output_y_test : strvar output_y_train : strvar test_set : Union[NoneType, int, str, list]var yvector : str
class ConfigGAInterface (*args, **kwargs)-
dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)
Ancestors
- builtins.dict
Class variables
var XMatrix : strvar autocorrcut : floatvar autoscale : boolvar corrcut : floatvar crossover_rate : floatvar generations : intvar lj_transform : boolvar lno : floatvar max_latent_model : Optional[int]var max_vars_model : intvar migration_rate : floatvar min_vars_model : intvar mutation_rate : floatvar output_cv : strvar output_matrix : strvar output_q2 : strvar output_selected : strvar population_size : intvar varcut : floatvar yrand : floatvar yvector : str
class ConfigOPSInterface (*args, **kwargs)-
dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)
Ancestors
- builtins.dict
Class variables
var XMatrix : strvar autocorrcut : floatvar autoscale : boolvar corrcut : floatvar latent_vars_model : intvar latent_vars_ops : intvar lj_transform : boolvar lno : floatvar models_to_save : intvar ops_increment : intvar ops_type : strvar ops_window : intvar output_cv : strvar output_matrix : strvar output_models : strvar varcut : floatvar vars_percentage : floatvar yrand : floatvar yvector : str