Module qsarmodelingpy.calculate_parameters
Define algorithms for some statistics, such as
SSY,
PRESS,
R²,
MAE,
RMSE,
R…
Functions
def calcMAE(yreal, ypred) ‑> float-
Calculates the Mean Absolute Error.
MAE = \dfrac{\sum\limits_{i=1}^n \left\vert y_i - \hat y_i \right\vert}{n}
where y is the predicted value, \hat y is the true value and n is the number of data points.
Args
yreal:DataFrame,list,array- The real data.
ypred:DataFrame,list,array- The predicted data.
Returns
float- MAE
def calcPress(yreal, ypred) ‑> float-
Calculates predicted residual error sum of squares of
ypredregardingyreal.PRESS = \sum\limits_{i} (y_i - \hat y_{i})^2
Args
yreal:DataFrame,list,array- The real data.
ypred:DataFrame,list,array- The predicted data.
Returns
float- PRESS
def calcR(yreal, ypred) ‑> float-
Calculates R .
Args
yreal:DataFrame,list,array- The real data.
ypred:DataFrame,list,array- The predicted data.
Returns
float- R
def calcR2(yreal, ypred, mean_y=None) ‑> float-
Calculates the coefficient of determination ( R^2 ).
R^2 = 1-\dfrac{PRESS}{SSY}
Args
yreal:DataFrame,list,array- The real data.
ypred:DataFrame,list,array- The predicted data.
mean_y:float, optional- Mean of
yreal. IfNone, it'll be calculated. Defaults to None.
Returns
float- R^2
See also:
def calcRMSE(yreal, ypred) ‑> float-
Calculates the Root Mean Square Error.
RMSE = \sqrt{\dfrac{PRESS}{n}}
Args
yreal:DataFrame,list,array- The real data.
ypred:DataFrame,list,array- The predicted data.
Returns
float- RMSE
See also:
def ssy(y, mean_y=None) ‑> float-
Calculates Total Sum of Squares of the dependent variable.
SSY = \sum\limits_{i} (y_i - \bar y)^2
Args
y:DataFrame, list, array- The vector to calculate SSY.
mean_y:float, optional- Mean of
y. IfNone, it'll be calculated. Defaults to None.
Returns
float- SSY