Module qsarmodelingpy.ga
Variable selection with Genetic Algorithm.
Functions
def checkLen(min, max)def initIndividual(icls, imin, imax, size)def returnIndices(individual)
Classes
class Ga (X: pandas.core.frame.DataFrame, y: pandas.core.frame.DataFrame, nLV: int = None, scale: bool = True, min_size: int = 5, max_size: int = 25, size_population: int = 200, mig_rate: float = 0.2, cxpb: float = 0.5, mutpb: float = 0.2, ngen: int = 120)-
Variable selection with Genetic Algorithm.
Args
X:DataFrame- The matrix with descriptors.
y:DataFrame, list, array- The dependent variable vector.
nLV:int, optional- Number of Latent Variables. Defaults to None.
scale:bool, optional- Defaults to True.
min_size:int, optional- Minimum number of variables in the model. Defaults to 5.
max_size:int, optional- Maximum number of variables in the model. Defaults to 25.
size_population:int, optional- Size of the population in each generation. Defaults to 200.
mig_rate:float, optional- Migration rate. Defaults to 0.2.
cxpb:float, optional- Crossover rate. Defaults to 0.5.
mutpb:float, optional- Mutation rate. Defaults to 0.2.
ngen:int, optional- Number of generations. Defaults to 120.
Methods
def evaluate(self, individual)-
Do some hard computing on the individual
def run(self)def savePop(self, file)-
Saves population to
file.Args
file (str path, file-like,
io): The filename to save population output. def saveQ2(self, file)-
Saves Q² output to
file.Args
file (str path, file-like,
io): The filename to save Q² output.